Recent Developments in the Acoustical Proper- Ties of Perforated and Porous Materials Con- Taining Dead-end Pores – Applications to Low Frequency Sound Absorption

نویسندگان

  • Philippe Leclaire
  • Alexandre Lardeau
  • Thomas Dupont
  • Alan Geslain
  • Raymond Panneton
  • Daniel Brooke
  • Olga Umnova
چکیده

It was shown recently in Nevers, France, Sherbrooke, Canada and Salford, UK, that porous materials with semi-opened pores or materials with open pores bearing lateral cavities or resonators at the microscopic scale of the pores can result in peculiar sound absorption properties. Various examples of these materials can be found in engineering and in everyday life including bio-based materials. The cavities and resonators can be assimilated to dead-end pores, which are opened at one end and closed at the other. The deadend pores are known to geophysicists. We studied them more recently in the field of engineering acoustics where the saturating fluid is air. The closed ends prevent the fluid to flow in the dead-end pores so that a crucial assumption usually made in the classical models of the acoustics of porous media based on Biot’s theory is not fulfilled for these materials. In some dead-end pore materials, it was observed that the frequency of the absorption peak was lowered and that the absorption was increased. This has led to the development of new materials with controlled microstructure for low frequency sound absorption applications. Perforated materials with dead-ends were designed and built and their low frequency performances were confirmed experimentally. Absorption peaks around 0.9 were measured at a few hundred Hz for materials of a few centimeters thickness. Future developments of dead-end pore materials are concerned with the optimization of the microstructure, new designs of the microstructure, the use of dead-end pore materials in muffler applications, the interaction with the black hole effect, the behavior under high sound level and the use of vibroacoustic properties of perforated plates for low frequency sound absorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic methods for measuring the porosities of porous materials incorporating dead-end pores.

The acoustic properties of porous materials containing dead-end (DE) pores have been proposed by Dupont et al. [J. Appl. Phys. 110, 094903 (2011)]. In the theoretical description, two physical parameters were defined (the dead-end porosity and the average length of the dead-end pores). With the knowledge of the open porosity (measured with non-acoustic methods), and the measurement of kinematic...

متن کامل

An Experimental Study of Alkali-surfactant-polymer Flooding through Glass Micromodels Including Dead-end Pores

Chemical flooding, especially alkaline/surfactant/polymer flooding, is of increasing interest due to the world increasing oil demand. This work shows the aspects of using alkaline/surfactant/polymer as an enhanced oil recovery method in the porous media having a high dead-end pore frequency with various dead-end pore parameters (such as opening, depth, aspect ratio, and orientation). Using glas...

متن کامل

Acoustics of porous materials with partially opened porosity.

A theoretical and experimental study of the acoustic properties of porous materials containing dead-end (or partially opened) porosity was recently proposed by Dupont, Leclaire, Sicot, Gong, and Panneton [J. Appl. Phys. 110, 094903 (2011)]. The present article provides a description of partially opened porosity systems and their numerous potential applications in the general context of the stud...

متن کامل

Estimation of Sound Absorption Behavior of Combined Panels Comprising Kenaf Fibers and Micro-Perforated Plates below 2500 Hertz

Introduction: Natural materials are more efficient and attractive than synthetic materials. In this study, the sound absorption behavior by natural kenaf composite and Micro-Perforated Panel (MPP) at low and medium frequency region was investigated. Material and Methods: Initially, the results of kenaf fibers with a thickness of 10 mm were validated by the Finite Element Method (FEM) based on ...

متن کامل

An alternative Biot's formulation for dissipative porous media with skeleton deformation.

This paper presents an alternative formulation of Biot's theory to account for the elastic frame effects in a porous medium in which the acoustical properties of the fluid phase are predicted with an equivalent fluid model. This approach was originally developed for a double porosity medium. In this paper, the alternative formulation is applied to predict the transmission loss and absorption co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017